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Abstract-Limiting solutions are developed for the Green’s function of the extended Graetz problem of 
mass (or heat) transfer, satisfying absorption boundary conditions, in flat channels. A differential equation 
directly satisfied by the Green’s function of the transmission flux is derived. For finite Peclet numbers, the 
non-existence of similarity solutions is pointed out. Both uniform and parabolic velocity profiles are 
considered. While all orders of boundary layer solutions are obtained for the former case, only leading 
terms are derived for the latter, based on the approximation of a linearized profile near the wall. It is 
concluded that for sources confined close to the absorbing boundary, the axial diffusion effects cannot be 

ignored even at relatively large Peclet numbers. 

INTRODUCTION 

THE CLASSICAL Graetz problem, along with its exten- 
sion to include axial diffusion (or conduction), is of 
interest in several mass (or heat) transfer applications 
in channel flows and has been treated extensively by 
several investigators [l-5]. Many practical appli- 
cations involve the calculation of the Nusselt number 
and the penetration fraction for varying source dis- 
tributions inside the channels, as well. The analytical 
solutions to these problems are generally presented 
either in the form of eigenfunction (Graetz type) series 
or in the form of limiting (LCvCque type) solutions. 
While the former type of solutions converge rapidly 
for large axial parameters measured from the point of 
discontinuity in the source, the latter do so for small 
axial parameters. In this paper, the LCveque type solu- 
tions are investigated for mass transfer with axial 
diffusion (i.e. finite Peclet number, Pe), from a basic 
point of view. With the exception of Newman’s [6] 
work, little appears to be available on this. However, 
Newman’s extension is addressed to a particular type 
of source, namely uniform inlet distribution. It has an 
unsatisfactory [7j feature of adding the axial diffusion 
term to the mass balance equation and treating it as 
an initial value problem, in semi-infinite channels. 
Besides, the usual procedure of expanding the dis- 
tribution function in terms of similarity variables, is 
not applicable for finite Pe. This is because when Pe 

is finite, the differential equation is not invariant under 
a stretching group of transformations, and therefore, 
it does not have similarity solutions. Moreover, the 
traditional method cannot be extended for upstream 
transport which is an important consequence of axial 
diffusion. Apart from this, the conventional assump- 
tion that at large Peclet numbers, the effect of axial 
diffusion on the parameters of downstream transport 
is perturbatively small, is not universally valid. In 
fact, when the sources are confined to the diffusion 

boundary layer, a significant upstream mass transfer 
will occur even at high Peclet numbers, thereby sub- 
stantially reducing the fraction available for down- 
stream transport. Such boundary layer sources arise in 
connection with the sampling of recoil atoms emitted 
following the radioactive decay of their parent atoms 
initially deposited on the channel walls [8]. In order 
to analyse this effect quantitatively, the point source 
response of the extended Graetz problem is inves- 
tigated in the limiting region, via Green’s function and 
Fourier transform techniques, both for uniform and 
parabolic velocity profiles. 

FORMULATION 

The problem for rectangular channels is formu- 
lated. Its extension to cylindrical ducts is rather 
straightforward. Let H be the half width between the 
channel walls, which are assumed to be infinite in 
extent. Let the X-Z plane coincide with one of the 
walls, with XE( - co, co), and the Y-axis be per- 
pendicular to them { y E [0,2H]}. The fluid is assumed 
to flow in the positive direction of the X-axis with 
a centre-line velocity v,. It is required to study the 
response of this channel (with absorbing walls) to a 
line source placed at x,,, y,, perpendicular to the direc- 
tion of flow and parallel to the walls. The Peclet 
number and the non-dimensional coordinates are 
defined as 

Pe = v,H/D 

where D is the diffusion coefficient of the particles 

r = Y/HE IO,21 

and 

p 3 (ZjPe) 

where 
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NOMENCLATURE 

Ai Airy function of the first kind .P .X/HE(-X, X) 

a, Pe(2n + n) !’ Y (lateral) coordinate E [0,2N]. 

b, Pe(2n+2-r)) 
c real number (0 ==z c < 1) Greek symbols 
D diffusion coefficient of particles 6(p) Dirac delta function 

F(x) integral defined in equation (A3) ; r4’? 
g(q, p/qO, p,J Green’s function for the Y reduced lateral distance (y/H) E [0,2] 

concentration field ilo reduced lateral distance for the source 
H lateral half width of the channel O(q. ~4) Green’s functions for the transmission 
J’(q, p) cumulative deposition fluxes flux 

K,(x), K,(x) modified Bessel functions of A’ reduced axial distance, Dx/v,H’ 
orders 0 and 1 p’o reduced axial distance for the source 

Pe Peclet number, v,HID v axial variable for plug profile, Pe 1 

P>9 complex integration variables j’ lateral variable for parabolic profile, 
U,(u, v) function defined in equation (lob) for q(2Pr)“’ 

j=O,l P real integration variable 

V(V) 1 for plug and (27 - $) for parabolic t axial variable for parabolic profile. 

velocity profiles 1(2Pe)“’ 

0, centre-line velocity of the stream I$(~J, (0) solution of equation (6a) 
X X (axial) coordinate (11 transform variable conjugate to p. 

I= (~/H)E(--,a). N(0.p) = O(2,p) = U(r/, * XJ) = 0. (3b) 

The Green’s function g(r), p/r~~,pJ for the con- It follows from equation (3a) that 
centration distribution satisfies the equation 

fj(q,O+)-fl(q,O-) = 1 and FE(,,O+) = $q,O ). 

Ua) 

where v(q) (1 for plug flow, 2~ - n2 for the parabolic 
profile) is the velocity profile and 6 the Dirac delta 
function. The boundary conditions are 

g(O, &Jo, /QJ = g(2, /&I> PO) = 9(% * alrl0, P”) = 0. 

(lb) 

In most of the situations, the quantity of practical 

interest is the Green’s function for the transmission 
flux, which is defined by 

A differential equation (in the source coordinates, 
no and p-n,) for O(&IO, p,,) may be easily constructed 
from equation (la) via its adjoint equation by the 
well-known procedure [9]. Upon setting pco = 0, drop- 
ping the suffix from no, and redefining Q = 0(n, p), one 
obtains 

a% 
p + & g -(I(?)$ +v(r1)W 

-(l/Pe*)G'W = 0, rEP,21, PEE(--,~) (34 
along with 

Besides, f3(n, p) is negative when p < 0. The Nusselt 

number J+, which is the total quantity deposited up 
to a length ~1 (say p > 0) is given by 

J*(Y,P) = H(~,O+)-l)(q.1-0. P > 0. (4) 

Therefore, the knowledge of tt(r),O+)-which will 

be substantially different from unity for boundary 
layer sources due to upstream transmission-is essen- 
tial for the calculation of the deposition flux. It should 
be remarked here that when Pe = co, equation (3a), 
along with equation (3b) is completely equivalent to 
the classical Graetz problem. Hence its limiting solu- 
tions are classical LCvEque solutions. Similarly, equa- 
tion (3a) can be shown to be equivalent to a heat 
transfer problem [lo] with a step change in tem- 
perature at p = 0 on the channel walls. However, this 
equation cannot be split up into a self contained set 
of one-sided equations separately for p < 0 and 11 > 0, 
thereby making the Newman procedure [6] of simi- 
larity expansion inapplicable. On the other hand, the 
well-known asymptotic methods in Fourier inversion 
offer powerful tools for this purpose. Both uniform 
and parabolic velocity profiles will be considered in 
the next section. While the latter case is more impor- 
tant from a practical point of view, the former cor- 
responds to certain moving source problems [ 111 and 
is mathematically simpler. 
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LIMITING SOLUTIONS 

The upstream mass transfer due to a steady source 
is not solely due to axial diffusion, but arises as a 
consequence of the combined effect of axial diffusion 
and the absorption boundary conditions at the walls. 
In fact, in the absence of absorption, the drift and the 
diffusion currents are balanced in the upstream region 
due to statistical equilibrium. The above statement 
also implies that when the sources are far removed 
from the boundaries (i.e. when the absorption is 
small), the upstream transmission vanishes asymptot- 
ically. In the limit of small p, therefore, a significant 
contribution to 6 for p < 0 (or to 1-B for p > 0) 
arises only if the source is close to one of the bound- 
aries. Thus, the limiting solutions are also boundary 
layer solutions. All orders of such solutions will be 
obtained for plug flow ; for a parabolic profile, those 
beyond the linearized (i.e. Couette flow) regime are 
difficult to obtain. 

Now, upon using the method of Fourier transforms 
with respect to the variable p, the formal solution to 
equation (3a) may be written as 

t&j-,/i) =“+A I 
03 

2l1.11 27n -m 
exp(-iw)&v,w) $, 

pe(--,a) (5) 

where r#~(q, o) satisfies the following differential equa- 
tion with respect to 1: 

along with 

qS(O, 0) = 4(2,0) = 1. (6b) 

When the fluid is stagnant, i.e. v(q) = 0 (or Pe -F 
0), the solutions of equation (6a) are linear com- 
binations of exp [f lolrl/Pe]. This, along with bound- 
ary conditions (6b) reduces equation (5) to 

Q,.?) = (l/n) tan- 
I [ii$!g)] 

s (l/a) tan-’ 14x7, Pe = 0. (7) 

This is an exact result. Its importance lies in the fact 
that, irrespective of the form of the velocity profile, 
all boundary layer solutions corresponding to finite 
Pe, approach the second form of equation (7) in the 
limit q, 2 + 0. This may be easily seen by noting that, 
the form of 6(q,p) as x’ (or p) + 0, is governed by 
the form of ~(v,w) as lwl --, co. When q+ 0, the 
asymptotic (loi + co) solution to equation (6a) is 
exp (- lolr]/Pe), irrespective of the form of o(q) so 
long as it is bounded, and this readily integrates in 
equation (5) to yield the second form of equation (7). 

Plugftow : v(q) = 1 
In this case, equation (6a) has the solution 

&l,~) = 
cos [(l -~)(iw)‘/2(1 +iw/Pe2)‘12]. 

cos [(iw) I/‘( 1 +iw/Pe*) “‘1 

(*) 

Upon transforming, iw = - Pe* q and v = Pe2 p = 
Pe ZE (-co, co) and substituting equation (8) in 
equation (5), one has 

1 ( > 1 
wLv> =Tj 1+; -2ni 

‘+‘- 
X s [ exp (vq)cosh (Pe(1 -tl)q”2(1 -q)‘j2} 

qcosh {Peq”2(1 -q)‘12} 1 dq ’ c--im 

-c.ocovv< and O<c<l. (9) 

AS shown in the Appendix, equation (9) may be 
simplified as follows : 

WLP) =e”“~~~(-l)“[~,(a,,v)+~,(b.,v) 

+v(~,(~,,v)+~l(~,,v)}l, vE(--,a) (104 

where a, I Pe(2n + q), 6, z Pe(2n + 2 -q) and 

q(z, v) = s o= [t2 + v2]-“‘K;[:(t’ + v’) “‘1 dt, 

j = 0,l. (lob) 

(K,, and Kl are the modified Bessel functions.) Besides 
CT,@, -v) = U,(z, v) and [12a) 

Uj(co,(vJ) = nlv(-iexp(-lvl/2), j= 0,l. (10~) 

The successive terms of equation (10a) represent 
the higher order solutions arising out of the reflection 
effects from the opposite wall. Either when Iv1 z 0 for 
a given rl or when r] % 0 for a given v, it may be 
shown from equations (lOa)-(10c) that the leading 
approximation is 

eh f 14) &{&?r* + v’)} 

KI {t&t* +v2)} 1 dt. (11) 

Equation (11) is an exact result for the case of mass 
transfer over a single plate (r] = 0) as well. It also 
satisfies all the requirements (equations (3b) and (3~)) 
including those specific to the boundary layer solu- 
tions as mentioned at the beginning of this section. 
Moreover, the quantities, e(q, f 0), which are 
required for the computation of Jmay be easily evalu- 
ated from equation (11) by setting Iv1 = 0. From this, 
it follows that Q, 40) -+ + l/2, as q -+ 0. 

As Pe -+ co, it may be verified from the well-known 
asymptotic expansions for K,, and K, that, for p > 0, 
equation (lOa) goes over the usual error function 
series in terms of the similarity variable, q/2,/~. On 
the other hand, when p < 0, it may be shown that 

@rl, 4 ,,,T, -(1/2J7r)Pe~lv[-3’2 

x exp [v +Pe2 r’/(4v)], v < 0. (12a) 
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FIG. I. Variation of the downstream transmission flux [B(v, v), Y > O] in flat ducts with respect to the lateral 
boundary parameter, Pe q, for a few limiting values of the dimensionless axial parameter v (E Pea?') in the 
case of a uniform velocity profile (equation (1 I)). (Pe = Peclet number, q and 2 are respectively the lateral 

and the axial distances measured in terms of the channel half width.) 

The solutions represented by equation (11) are plot- 
ted in Figs. 1 and 2 separately both for v > 0 and 
v < 0. It may be seen from Fig. 2 that the magnitude of 
the upstream transmission flux possesses a maximum 
with respect to II, which gradually shifts to a value of 0.5 
at 7 = 0 and v = 0 This maximum arises due to the 
interplay of the two competing processes, namely the 
statistical equilibrium when the source is far away and 
the absorption condition when the source is near the 
wall. Approximately, this maximum can be shown 
(consistent with the approximations involved in deriv- 
ing equation (12a)) to occur al 

)Ima* - (2M) “z. @< 0. (I2b) 

It must be mentioned in passing that the series 
representation (equation (loaf) for @(q, v) can also be 
converted into a real integral representation, which 
reduces to equation (7) for Pe = 0. However, for 
Pe = 00, such a real integral representation does not 
exist. 

For this case, the solutions to equation (6a) are 
the parabolic cylinder functions. If one develops a 
perturbatiol~ around the centre-line (q = 1) using the 
asymptotics of Olver [13], it may be shown that the 
lowest order solution is identical to that for plug flow, 
i.e. equation (10a). While any order of perturbative 
expansion may be developed this way for sources close 
to the centre-line, it does not lead to a boundary layer 

solution which will be superior to the ubiquitous result 
of equation (7). One can of course use somewhat 
involved expansions of Olver for qb(q,o) around 
y = 0 ; however, a more direct way to obtain leading 
solutions would be to approximate the parabolic vel- 
ocity profile by a linear one in the boundary layer 
region. 

In this spirit, one sets, 3~-$ sz 21 (7 z 0) and 
relaxes the domain of rI as q E: [O. SJ), in equation (6a). 
Upon substituting q z -io/Pr* and seeking the solu- 
tion of equation (6a) which tends to unity as r) --* 0 
and vanishes as 4 --* CQ (9 # O), one has 

q 3 0 and q = io/Pr’. (13) 

In the complex q-plane, $(r, q) has a branch point 
at q = 0 with the branch cut extending along the nega- 
tive real axis, and a series of simple poles along the 
positive real axis, i.e. the complete set of eigenvalues 
has both discrete and continuous parts. Cor- 
respondingly, the downstream (p > 0) flux will be 
given by an integral along the branch line and the 
upstream (h < 0) flux will be a series of residues evalu- 
ated at the poles. This is unlike the plug flow case 
in which, in the boundary layer approximation, the 
branch cut extends on a part of the positive real axis 
as well (Appendix). 
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FIG. 2. Variation of the upstream transmission flux [ - 0(~, v), v < 0] in Aat ducts with respect to the lateral 
boundary layer parameter, Pe 4, for a few limiting values of the dimensionless axial parameter v (E Pe .f) 
in the case of a uniform velocity profile (equation (11)). (Pe = Peclet number, 9 and f are respectively the 

lateral and the axial distances measured in terms of the channel half width.) 

Case(i) : p > 0. In view of the remarks made above, 
one may reduce equation (5) using equation (13) to 
the following real integral for the downstream flux, 
after some rearrangement : 

exp (-~&4’)[[Ai[-[(u 

[Ai’[-iu”]+Si’[-iu’]]]~, z > 0 (14) 

where, z, 5 (or I) are the boundary layer variables for 
Couette flow, defined by 

e E (2Pe)“*rf, c 3 <4’3 

and z = (2Pe3)‘12p = Z(2Pe)‘12. (15) 

When Pe = co, equation (14) can be shown to 
reduce to the well-known classical Leveque limit in 
the similarity variable, r]pm’j3. Figure 3 shows the vari- 
ation of B(<, z) (equation (14)) as a function of r for 
a few values of r. 

Case (ii) : p < 0. The poles of 4(~, q) in equation 

(13)? occur at q,, = (2/Pe)‘12rJ/4, where -r,, 
(n = 0, 1, . . .) are the zeros of the Airy function Ai. 

The residues of equation (5) may be easily evaluated 
at these poles to yield 

Ai[ - r, + &,‘4] 
r AfL_r I 

, 7<0. 
” n 

(16) 

When 1~1 is small, a large number of terms would 
be required in the above series. For large n, 
r, N (3~/2)“~(n+ 3/4)*j3. Figure 4 shows the variation 
of lS({, r)l as a function of [, for a few values of r. As 
in the case of plug flow, here too, the upstream flux 
possesses a maximum which tends to 0.5 at 5 = z = 0. 

For large Pe and small 1~1, instead of equation 
(16), a simpler approximation may be derived in the 
following way (this applies to downstream flux as 
well). Since, q ( = - io/Pe2) occurring in equation (13) 
is essentially an integration variable in equation (5), 
it may be transformed top = 1 -q/21, for r < 0. Once 
expressed in terms ofp, equation (13) may be reduced, 
by a careful use of asymptotics for the Airy functions, 
to 

4(&p) - exp [-5’~“~(1 -P>‘?. 

This is of the same form as that for plug flow (Appen- 
dix), and hence 

where the functions U, and U, are defined in equation 
(lob). Incidentally, the same expression is valid even 
for z > 0, under similar approximations. Comparison 
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FIG. 3. Variation of the downstream transmission flux [B(<, z), T > 0] in Nat ducts with respect to the lateral 
boundary layer parameter, t [E ~(2Pe) ‘I*], for a few limiting values of the dimensionless axial parameter 

_ , z [3.\-(2&7)‘~~ in the case of a parabolic velocity profile (equation (14)). (8% = Peclet number, q and .lil are 
respectively the lateral and the axial distances measured in terms of the channel half width.) 
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NON -DlMENSl~NAL LATERAL CO-ORDINATE, 3 

FIG. 4. Variation of the upstream transmission &IX [ - UjZ;, .t), z < 0] in Rat ducts with respect to the later&i 
boundary layer parameter, l [z&Fe) “‘1, for a few limiting values of the dimensionless axial parameter 
T [ a.Z(2Pe) 1/2] in the case of a parabolic velocity profile (equation (16)). (PC = Peclet number, q and z? are 

respectively the lateral and the axial distances measured in terms of the channel half width.) 
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of these with the full equation (equation (14) or (16)) 
suggests a good agreement between the two in the 
boundary layer region (5 o 0). 

For z < 0, using equation (17), the maximum in the 
upstream flux can be shown to occur at 

5 ma* /T”,- (-r/3)“3 z < 0. (18) 

In reality, however, under Couette flow approxi- 
mations, the point of maximum does not inde~nitely 
increase with respect to 1~1 as predicted by the above. 
As z -+ -co, it is limited by the first term in the series 
(equation (16)), i.e. &,,,, --+ 1.0167 as z --f --oo. 

CONCLUSIONS 

In this analysis, starting from the differential equa- 
tion directly satisfied by Green’s function for the 
transmission flux, one has been able to obtain all 
orders of boundary layer solutions for a uniform vel- 
ocity profile and only leading terms for a parabolic 
profile. As can be seen from this, the upstream flux is 
nearly 0.5 for boundary layer sources for both the 
velocity profiles, thereby substantiating our earlier 
assertion regarding the dominating effect of axial 
diffusion in such cases. Therefore, for realistic bound- 
ary layer sources extending in the positive X-direction 
(say) a significant wall deposition in the entrance 
region would be due to upstream di~usion effects. 
For general sources, a detailed calculation of the wall 
deposition must take into account both the con- 
tributions from all source points. 
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APPENDIX. EVALUATION OF THE INVERSION 
INTEGRAL (EQUATION (9)) 

Upon using the identity 

Icoshzl-‘=2f (-l)“exp[-{2n+l)z], Z>O (Al) 
n=* 

equation (9) may be rewritten as 

- 5 (- lW(aJ+~(bJl (A2) 
n-0 

where, a, = (2n+q)Pe, 6. = (2n+2-n)Pe and 

c+iUJ 

F(x) E (27ri)-’ s exp [vq--xq”2(l -q)“2]q-* dq, 
e-im 

v > 0 and 0 < c -=z 1. (A3) 

The integrand in equation (A3) has branch points at q = 0 
and 1. The corresponding branch lines are between [O, - a~) 
and 11. co). For r > 0, upon constructing a contour on the 
negative i-plane, equation (A3) may be reduced to the fol- 
lowing integral over the real line : 

F(x) = 1 -(n)-’ 
s 

m ee’psin [xp’!‘(l +p)“‘]p-’ dp, v > 0. 
0 

(A4) 

Upon transfo~ing the integration variable to 
t z 2p’“(l tp)“’ and noting the following identities, namely 
[12b]: 

&[(a’+ b*) “‘1 

= 
s 

O” (l+t2)-i’2 exp[-b(I+t~‘~*Jcos(ar)dt (A5) 
0 

and 

K,(u) = -&6(u) (A6) 

one arrives at 

F(n) = 1-g : [v(t2+11*)-‘~2K,(~~(t2+“*)t s 
~~~~-~(~‘+v*)}]dz, v > 0. (A7) 

Upon substituting equation (A7) in equation (A2) and on 
using equation (lob) and the identity, c,“=,(-ly = I/2, 
one arrives at equation (IOa) valid for v > 0. 

For v i 0, upon transforming the integration variable in 
equation (A3) to p = I-q, and following the same pro- 
cedure as above, one arrives once again at equation (IOa). 
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SOLUTIONS DE COUCHE LIMITE AVEC FONCTION DE GREEN POUR LE 
PROBLEME GENERAL DE GRAETZ 

R&m&-Des solutions limites sent developpees pour la fonction de Green dans le probltme de Graetz du 
transfert de masse (ou de chaleur), satisfaisant les conditions aux limites d’absorption dans les canaux 
plats. On derive une equation differentielle directement satisfaite par la fonction de Green de la transmission 
du flux. Pour des nombres de Peclet finis, on d&gage l’inexistence des solutions similaires. On considtre les 
profils uniformes et paraboliques de vitesse. Alors que tous les ordres des solutions de couche limite 

sont obtenus pour le premier cas, seuls les termes principaux sont derives pour le dernier, a partir de 

l’approximation dun profil linearise pres de la paroi. On conclut que pour des sources confinees pres de 

la front&e absorbante, les effets de la diffusion axiale ne peuvent &tre ignores m&me pour des nombres 

de Peclet relativement grands. 

GRENZSCHICHT-LdSUNGEN DER GREEN’SCHEN FUNKTION FUR DAS 
ERWEITERTE GRAETZ-PROBLEM 

Zusammenfassung-Es werden Losungen fur Grenzfglle der Green’schen Funktion fur das erweiterte 
Graetz-Problem des Stoff- (oder Wlrme-)transports in flachen Kan5len entwickelt, die den Absorp- 
tionsrandbedingungen geniigen. Es wird eine Differentialgleichung abgeleitet, der die Green’sche Funk- 
tion fiir die iibertragene Stromdichte direkt geniigt. Fur endliche Peclet-Zahlen wird das Fehlen von 
Ahnlichkeits-Losungen aufgezeigt. Es werden sowohl gleichfiirmige als such parabolische Geschwin- 
digkeitsprofile betrachtet. WIhrend man im ersten Fall alle Ordnungen der LBsung der Grenzschicht- 
gleichungen erhllt, werden-basierend auf der Naherung linearer Profile in Wand&he---im zweiten 
Fall nur die Hauptterme abgeleitet. Es wird gefolgert, da13 die axiale Diffusion fur Quellen nahe der 

Absorptionsgrenze selbst fur relativ gro6e Peclet-Zahlen nicht vernachllssigt werden kann. 

PEIUEHHII B HPAEJIMTEHHM HOFPAHW’4HOFO CJIOII OEOEIQEHHOH 3AflA4H 
FPETHA C HOMOIlIbIO @YHKHHH FPMHA 

AlRIOTWINI--~OJIy’IeHbI yAOBJIeTBOpKIoIIIIIe rpaHWIHbIM yCJIOBHRM a6cop6new IIpWeJIbHbIe ~IIIeHIIX C 

IIOMOIIILIO ~~IIKUIIII rpmm o6o6nIemIoii 3anaw rpeTIIa 0 nepwoce MaccbI (wnu Tenna) B I~IOCKBX 

KaHanax. BbIBeneHo nn#$fzpeHuaanb~oe ypaBneHKe ,m~n MacconepeHoca, HenocpencrseHno pemaeMoe c 

IIOMOIIJbIO ~y”KIIIIII rpIIHa. QTMe’IeHO OTCyTCTIIIIe aBTOMOAenbHbIX lWIIeHUii -II KOHe’IHbIX 3HaYeHWKX 

‘IIICJIa l-kKJle. PaCCMOTpeHbI KaK O~IIOpOJIHbIe n0 Ce’IeHHH), TaK II IIapa6onHuecKHe IIpO@UIII CKOPOCTH. 
B TO LIpebIR KIK B IIepBOM CJIy’Iae IIOJIy’IeHbI lW.IIeHWI yl?aBHeHIIii IIOrpaHHqHOt’O CJIOR BCeX IlOpWtKOB, B 

nocnenHeM onpenenenbr TonbKo rnaeHbIe BenklwHbI nyTeM annpoKcnMawK nnHeapn30eaHHoro 

npo+unn y creHKn. Cnenan BbInoA 0 TOM, YTO B cnyqae Korea IICTO~IMK~ HaxoIwTcn e6nuaa norno- 

IIIaIoI.IIeti rpaHHnbI, HeJIb IIpeHe6peraTb 3@@KTaMH OOZBOi A@49’3HH IWKe IIpH OTHOCIITeJIbHO 

6onbmax 3na~eHrirrx qncna Herne. 


